SHORT COMMUNICATIONS

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible.

Acta Cryst. (1982). B38, 2092-2093

Structure of the Ni₁₁Zr₉ phase and its thermal expansion coefficient. By S. K. SHADANGI and S. C. PANDA. Department of Physics, Government College of Engineering and Technology, Raipur (MP), India and S. BHAN, Department of Metallurgical Engineering, Banaras Hindu University, Varanasi (UP), India

(Received 20 August 1980; accepted 1 February 1982)

Abstract

The Debye–Scherrer pattern of the alloy $Ni_{55}Zr_{45}$ clearly shows the lines of the phase $Ni_{11}Zr_9$ which appears to be isostructural with the phase $Pt_{11}Zr_9$. The unit cell of this intermetallic phase, which contains 40 atoms, is bodycentered tetragonal with a = 10.2996 (58) and c = 6.9359 (42) Å. The thermal-expansion coefficient has been investigated in the temperature range 1003–1493 K. The alloy $Ni_{55}Zr_{45}$ was prepared from reactor-grade Zr and Ni of 99.99% purity (Johnson Matthey & Co. Ltd, London) in a non-consumable-electrode argon arc furnace. The alloy was inverted and remelted several times to promote homogeneity. Powders obtained by filing the ingot were sieved through a 325 mesh screen and were sealed under vacuum in silica tubes for heat treatment at different temperatures.

All the X-ray patterns of this alloy could be indexed as a b.c.t. structure (Table 1). Hence it is inferred that the phase $Ni_{11}Zr_9$ does not undergo any phase transformation.

Table 1. X-ray diffraction data of $Ni_{55}Zr_{45}$ alloy, annealed at 1493 K for 30 min and quenched in water (exposure time 10 h, Cu Ka radiation)

$2\theta_{exp.}$		d _{exp.}		<i>∆2θ</i> †	$2\theta_{exp}$		d_{exp}		<i>∆2,θ</i> †
(°)	I/I_0^*	(Å)	h k l	(°)	(°).	<i>I/I</i> ₀ *	(Å)	h k l	(°)
23.71	10	3.7517	211	+0.536	64.90	20	1.4367	404	+0.079
24.88	20	3.5784	220	+0.436	66-22	40	1.4112	334	-0.010
28.35	10	3.1477	112	-0.154	69.48	10	1.3528	730	-0.025
28.94	100	3.0850	301	-0.078	71.94	40	1.3125	514	+0.203
31.02	100	2.8828	202	-0.069	75 6	•••		(811	-0.111
34.94	50	2.5679	400	+0.098	75.59	20	1.2579	732	+0.143
36.00	40	2.4943	222	+0.252	79.56	20	1.2048	723	+0.154
36.98	80	2.4310	330	-0.051	04.05			1840	+0.001
39.27	10	2.2939	420	+0.164	84.05	40	1.1515	1505.435	-0.023
40.20	20	2.2429	103	+0.264	86.52	20	1.1249	206	+0.291
12 70	60	2 0675	213	-0.029	88.87	40	1.1011	921.761	+0.175
43.10	00	2.0075	1402	-0.004	90.32	10	1.0872	316	+0.237
44.70	20	2.0272	510	-0.171	94.27	20	1.0518	545	-0.140
45.94	100	1.9753	501,431	-0.015	97.33	40	1.0267	903	-0.134
47.32	20	1.9209	303	-0.084	99.42	20	1.0106	705	-0.168
49.48	60	1.8421	521	+0.046	101-57	20	0.99495	664	-0.059
49.99	60	1.8243	440	-0.106	105.36	20	0.96938	217	-0.107
50.79	60	1.7975	323	-0.012	113-51	10	0.92172	417	-0.130
51.78	10	1.7655	530	+0.028	121.59	40	0.85315	905	-0.089
54.14	40	1.6938	114	-0.242	100 54			(208	-0.020
56.00	60	1.6419	204	+0.052	128.74	10	0.85503	617	+0.044
57.04	60	1.6144	442	-0.091	130.65	40	0.84835	826	+0.014
58.38	20	1.5805	532	-0.267	100.04			1666	-0.158
58.97	20	1.5662	224	-0.025	133.96	20	0.83760	318	+0.072
			541	+0.032				(510	10.012
60.55	40	1.5290	314	+0.070	139.02	10	0.82296	707	-0.409
61.83	20	1.5004	631	-0.059	141.68	10	0.81611	338	+0.153
63.31	40	1.4688	523	+0.233	143.89	40	0.81082	916	_0.026
					1,5,07	40	0.01007	710	-0.070

Table 2. Lattice parameters and thermal-expansion data of the compound Ni₁₁Zr₉ at different temperatures

Heat treatm water quer	ent and ching	a (Å)		c (Å)			
Temperature (K)	Time (min)	Observed	Calculated from linear equation	Observed	Calculated from linear equation	$\begin{array}{c} \alpha_a imes 10^6 \ (K^{-1}) \end{array}$	$\begin{array}{c} \alpha_c imes 10^{\circ} \ (\mathrm{K}^{-1}) \end{array}$
298	_	9-9646 (58)	9.9661	6.6940 (42)	6.6944	28.05 (1)	29.71 (4)
(As cast)							
1003	70	10-1626 (58)	10.1631	6.8357 (42)	6.8346	27.50(1)	29.10 (4)
1093	60	10.1892 (58)	10.1883	6.8538 (42)	6.8525	27.43 (1)	29.02 (4)
1223	50	10.2250 (58)	10.2246	6.8758 (42)	6.8783	27.33(1)	28.93 (4)
1293	40	10.2558 (58)	10.2442	6.8950 (42)	6.8923	27.25(1)	28.85 (4)
1423	60	10.2703 (58)	10.2805	6.9125 (42)	6.9181	27.21(1)	28.77 (4)
1493	30	10-2996 (58)	10.3001	6.9359 (42)	6.9320	27·14 (1)	28·68 (4)

Kirkpatrick & Larsen (1961) have shown the existence of this phase with a b.c.t. structure but the reported parameters appear to be tentative. The correctness of the crystal structure of this phase has to be decided by comparison with the phase $Pt_{11}Zr_9$ (which has 40 atoms per unit cell and is b.c.t. with a = 10.257 and c = 6.888 Å) reported by Panda & Bhan (1974). Comparison shows that $Ni_{11}Zr_9$ is isomorphous with the $Pt_{11}Zr_9$ phase. This is expected as Ni and Pt are both members of the T^{10} group with ground-state electron configurations of their free atoms of $3d^8 3s^2$ and $5d^8 6s^2$ respectively and both have similar alloying behavior (Panda & Bhan, 1973).

Thermal-expansion coefficient

The X-ray photographs of the alloy $Ni_{55}Zr_{45}$ at each temperature were indexed and cell dimensions were determined using a least-squares treatment (Cohen, 1935, 1936). The standard errors in the lattice parameters so obtained were calculated by the method suggested by Jette & Foote (1935).

The lattice parameters vary linearly with temperature and the dependence may be expressed analytically as $a_T =$ 9.8828 (14) + 2.795 (13) × 10⁻⁴ T; and $c_T =$ 6.6351 (34) + 1.989 (31) × 10⁻⁴ T; where a_T and c_T are the lattice parameters at TK.

The linear coefficients of thermal expansion for both parameters are calculated by $\alpha_a = (1/a)(da_T/dT)$ and $a_c = (1/c)(dc_T/dT)$ and are listed in Table 2.

The American Institute of Physics Handbook (1972) only gives the values of α for pure Ni and Zr at 293 K, but the thermal-expansion coefficient of an alloy cannot be predicted from those of its constituents (Lonsdale, 1968).

The authors are grateful to the Metallurgy Division of Bhabha Atomic Research Centre, Trombay, for melting the alloy. One of the authors (SKS) wishes to express his sincere thanks to the UGC, New Delhi, for awarding him a Teacher Research Fellowship, and also to the Ministry of Education, Government of MP, for sanctioning study leave.

References

- American Institute of Physics Handbook (1972). Edited by E. G. DWIGHT, pp. 119–142. New York: McGraw-Hill.
- COHEN, M. U. (1935). Rev. Sci. Instrum. 6, 68.
- COHEN, M. U. (1936). Rev. Sci. Instrum. 7, 155.
- JETTE, E. R. & FOOTE, F. (1935). J. Chem. Phys. 3, 605.
- KIRKPATRICK, M. E. & LARSEN, W. L. (1961). Trans. Am. Soc. Met. 54, 580-590.
- LONSDALE, K. (1968). International Tables for X-ray Crystallography, Vol. III, pp. 125–129. Birmingham: Kynoch Press.
- PANDA, S. C. & BHAN, S. (1973). Z. Metallkd. 64, 793-799.
- PANDA, S. C. & BHAN, S. (1974). J. Less-Common Met. 34, 344–347.

Acta Cryst. (1982). B38, 2093-2095

On the 'riding-model' correction for bond lengths. By R. SRINIVASAN and N. R. JAGANNATHAN, Department of Crystallography and Biophysics,* University of Madras, Guindy Campus, Madras-600025, India

(Received 17 July 1981; accepted 6 April 1982)

Abstract

It is usual in structural reports based on X-ray or neutron diffraction methods to correct bond lengths for thermal-

* Contribution No. 579.

0567-7408/82/072093-03\$01.00 ©

motion effects. Two common procedures adopted are the riding model [Busing & Levy (1964). Acta Cryst. 17, 142–146], and the rigid-body model [Schomaker & Trueblood (1968). Acta Cryst. B24, 63–76], the specific choice being dependent on the circumstances. It would appear that no critical assessment is available in the literature as to how

-03\$01.00 © 1982 International Union of Crystallography